ЄКОЛОГІЯ ТА ЕКОЛОГІЧНА КІБЕРНЕТИКА

УДК 614.777

С. М. Квaternionюк; В. А. Іщенко, канд. техн. наук, доц.; О. Є. Квaternionюк

ОЦІНЮвання екологічного стану водних об’єктів
М. Вінниці на основі показників біоіндикації
ПО ФІТОПЛАНКТОНУ

За допомогою розробленого автоматизованого методу контролю проаналізовано сезонні зміни концентрації частинок фітопланктону, що дозволило визначити інтегральний рівень забруднення та врахувати комплексний вплив антропогенних факторів на екологічний стан водойм.

Вступ

Забруднення водних об’єктів полягає у внесенні речовини або енергії, що призводить до зміни функціонування водних екосистем, а також продуктивності та чисельності їх біологічних популяцій. У водні об’єкти, можуть надходити і накопичуватися як стійкі забруднюючі речовини, які практично не руйнуються у природних умовах (наприклад, ДДТ), так і речовини, що мають природні механізми засвоєння (нітрати, нітрити, фосфати) в кількостях, що порушують баланс водних екосистем та їх здатність до саморегуляції. Загалом, у водні об’єкти потрапляють тисячі шкідливих речовин, що суттєво ускладнює контроль їх екологічного стану. Оцінка стану природних водних об’єктів з використанням гранично допустимої концентрації є невиправданою, оскільки оцінити комплексний вплив багатьох хімічних забруднів на складні багатовидову екосистему, визначити їх концентрації, неможливо.

Для вирішення цієї проблеми використовують методи біоіндикації водних об’єктів, що дозволяють інтегрально оцінити їх забруднення широким класом хімічних речовин, а також вплив інших антропогенних факторів. Основний принцип гідробіологічного тестування водних об’єктів полягає у порівнянні виживання певних організмів у чистій та забрудненій воді.

У дослідженні балансованій екосистемі є велика кількість видів організмів, причому жоден з них не домінує. Зі зростанням забруднення екосистема спрацьовується, тобто залишаються тільки стійкі до забруднення види. У цій роботі вибрано у якості тест-організмів фітопланктон, що дозволяє аналізувати кілес якості води, спарубітись та трофічний рівень для широкого діапазону категорій поверхневих вод від чистих до дуже брудних, а також оцінювати рівень їх токсичності.

Методи дослідження

Відбір зразків фітопланктону проводився у водних об’єктах м. Вінниці з використанням батометра, а також з використанням фільтраційного та відстійного методів за допомогою сітки Ашпітка і мембранних фільтрів з діаметром пор 2 мкм [1]. Особливості збору та опрацювання матеріалу відповідали загальнорозумітним підходам вивчення фітопланктону. Зразки відбиравались у різних місцях водного об’єкту на різних глибинах за допомогою батометра для дослідження поля таких його гідробіологічних параметрів, як концентрації фітопланктону різних видів.

Крім того, для кожного із областей водного об’єкта досліджувалась інтегральна проба, що збиралась у ємності об’ємом 20...30 л та перемішувалась. Дослідження зразків фітопланктону здійснювалась in vitro, як в живому, так і фіксованому стані (розчин Люголя (0,5 мл/200 мл) або 16 % розчин формаліну

© С. М. Квaternionюк, В. А. Іщенко, О. Є. Квaternionюк, 2011

ISSN 1997-9266. Вісник Вінницького політехнічного інституту. 2011. № 6
(2 мл/200 мл) [2]. Зразки захищалися від дії прямого сонячного світла та зберігалися при сталій температурі.

Аналіз результатів

Аналіз зразків фітопланктону показав, що видове різноманіття альгофлори водоїм м. Вінниці представлене 248 видами. Провідною групою альгофлори є зелені водорості, які представлені 116 видами. Високим різноманіттям характеризуються також діатомові, егвленові та синьо-зелені водорості. Проведений аналіз показав, що у зразках фітопланктону взятих з річки вище міста за течією видове різноманіття значно вище ніж на ділянці річки в центральній частині міста, що є доказом вагомого антропогенного впливу на екологічний стан річкової екосистеми. Виявлені види водоростей-індикатори якості води [3], які засвідчують належність досліджених водоїм в переважній більшості до бета-мезозаплавного типу. Факторами деградації біорізноманіття виступає антропогенне еvroфувація, яке зумовлене забрудненням водоїм стічними водами різного типу, а також надмірна застосування сточних водойм і масовий розвиток синьо-зелених водоростей, які викликають «цвітіння» води (Microcystis aeruginosa, M. wesenbergii та Aphanizomenon flos-aquae). Відмінності між спектральними характеристиками поглинання пігментів різних груп водоростей, а також різний характер залежностей впливу температури на питому швидкість розмноження фітопланктону (рис. 1) зумовлює сезонні коливання розвитку чисельності різних груп водоростей (рис. 2).

[Рисунок 1: Залежність впливу температури на питому швидкість розмноження фітопланктону різних виділів: а — діатомові; б — зелені; в — синьо-зелені]

[Рисунок 2: Сезонні зміни співвідношення між різними групами фітопланктону а — діатомові; б — зелені; в — синьо-зелені водорості]

На основі результатів досліджень виявлени сезонні коливання зміни співвідношення між різними групами фітопланктону досліджених водоїм, що зумовлені природними факторами — змінами температури, сояної освітленості, концентрацією та хімічним складом речовин, що потрапляють у водойми з опадами та стоками (рис. 2). Весною та восени дімінантним є розвиток діатомових водоростей, на початку літа проходить хвиля розвитку зелених водоростей, а другій половині літа — синьо-зелені. Остання призводить, зокрема, до явища цвітіння води та створення токсичних речовин при відміраних таких водоростей.

В зв'язку з цим, доцільно використати індекс біоіндикації для оцінки антропогенного впливу. Ступінь індикаторності видів встановлюється з використанням зведених таблиць та атласів сапробних організмів і монографічних опрацювань конкретної групи фітогідробіонтів чи таєкомонійної групи загалі.

Оцінку якості води на основі результатів біоіндикації по фітопланктону проведемо таким методом. Індекс забруднення навколишнього середовища розроблений на основі методу Зелінки—Марвана реалізується таким чином [7]:

\[
S_{EPI} = \frac{\sum_{i=1}^{N} S_i C_{Zi} J_i}{\sum_{i=1}^{N} C_{Zi} J_i}
\]
де \(N \) — число видів фітопланктону, що є біоіндикаторами; \(C_{zi} \) — концентрації частинок фітопланктону \(i \)-го виду; \(s_i; J_i \) — сапробна валаентність та індикаторна вага \(i \)-го виду взяті з довідникових таблиць для видів-біоіндикаторів [2, 7, 8].

Індекс забруднення залежить від з класу та категорії якості води, а також від рівня сапробності [7]. Оцінка якості води на основі індексів біоіндикації була отримана на рівні \(S_{EPI} = 2,6..3,3 \) для зразків фітопланктону взятих на різних ділянках, що дозволяє оцінити клас якості води — III та IV, категорії якості води — «помірно забруднені» та «брудні», рівень сапробності — \(\beta \)-мезасапробний та \(\alpha \)-меза-салторний, рівень галобіності — олігогалобіо-інфідентний та олігогалобіо-галофільний, трофічний рівень — мезотрофний та еттрофний. Порівняння результатів оцінки якості води по індексам біоіндикації та результатам хімічних аналізів (рівень нітритів, ортофосфатів, неорганічного фосфору) показав високу достовірність результатів контролю. Однак оцінка на основі індексів біоіндикації є adekvatnій до оцінки комплексного антропогенного впливу на екосистему.

Окрім використаного індексу забруднення на основі універсального методу Зелінкі-Марвана, існує значний набір біотичних індексів [5] орієнтованих на конкретні види тестових організмів та запропонованих у різних країнах світу для оцінки екологічного стану конкретних водних об’єктів. Зіставляючи результати, отримані з використанням різних біотичних індексів, можна виявити розбіжності у оцінці екологічного стану, що викликає різною чутливістю вибраних біоіндикаторів до конкретних видів забруднення.

Методика оцінки рівня токсичності за допомогою біоіндикації по фітопланктону полягає у визначенні зміни концентраціях частинок водоростей під дією токсичних речовин, що містяться у тестовані води у порівняння з контролем. Короткочасне біотестування — 96 годин — дозволяє визначати наявність гострої токсичної дії тестованої води на водорості, а тривале — 14 діб — наявність хронічної токсичної дії. У якості тест-об’єкта використовується культура водоростей Scenedesmus quadratecauda (Turp) Breb. або Chlorella vulgaris Beijer [4, 9]. Водорості вирощують на штучному живильному середовищі Успенського № 1 у стерильній колбі з цілодобовим освітленням лампами денного світла, розміщеніми на відстані 30…40 см від поверхні культури, освітленість 2000…3000 лк. Культуру періодично переміщують струхуючи 1—2 рази на добу. Оптимальна температура для вирощування водоростей 18…20 °C. Для проведення дослідження рівня токсичності використовують 5—7 добову культуру водоростей фільтровану через мембраний фільтр № 4. Підготовлені водорості переносять до колби з 30…50 мл води, концентрація фітопланктону складає (5…10)·10^5 ml^-1. Далі готують дві колби з 100 мл контрольної та тестованої води, у які додають по 0,5 мл підготовленої культури водоростей, а також по 0,1 мл живильного сольового розчину мікроелементів. Контролюють початкову концентрацію фітопланктону, що повинна складати (25…50)·10^3 ml^-1. Колби розміщують у люміностат на заданий час. Далі зраховують \(K_T \) — відношення концентрації фітопланктону у тестованому \((C_{Zi}) \) та контрольному \((C_{Z0}) \) зразках води, що характеризує рівень інтегральної токсичності \(K_T = C_{Zi}/C_{Z0} \).

Особливістю впливу забруднювальних хімічних речовин на водні екосистеми є не лише зміна популяцій фітопланктону у відповідь на дію цих речовин, але й конкуренція взаємодія різних видів фітопланктону між собою. Різна чутливість видів фітопланктону до хімічних речовин приводить до складнішої динаміки зміни чисельності частинок фітопланктону у реальних багатовидових екосистемах у порівнянні з тестовими монокультурами водоростей. Для оцінки токсичної дії ширшого спектра хімічних сполук використовують тести з декількох видів фітопланктону — модельні водні екосистеми [2].

Досліджуючи екологічну рівновагу водних об’єктів аналізом співвідношення концентрацій частинок фітопланктону, у ході вимірювань отримують часові залежності концентрації частинок певних типів \(C_{Zi} (t) \). Для того, щоб дослідити рівновагу та динаміку зміни співвідношення між частинками різних типів у полідисперсній системі, пропонується переїхти від системи часових залежностей до системи залежності чисельності одного типу.
частинок від іншого \(C_{Zj} (C_{Zi}) \), упорядкувавши експериментальні дані по зростанню \(C_{Zi} \).

Висновки

Отримана залежність дозволяє аналізувати характер взаємодії у системі між частинками різних типів. У випадку дослідження динаміки популяцій фітопланктону водних об’єктів така залежність показує особливості взаємодії між різними видами фітопланктону — конкурентів, симбіоз або нейтраліз. Сезонна динаміка змініфінішілопланктону приводить до деяких відхилен залежності \(C_{Zj} (C_{Zi}) \) в межах норми, допустимих для сезонних варіацій. Для підвищення достовірності розрізняння частинок ПВС на підтипи можна використовувати флуоресцентні барвники, які виявляють специфічні для конкретних видів частинок макромолекули. Таким чином можна розрізняти частинки, зовнішній форма і внутрішні будова яких подібні, а тому спектрополяриметричні зображення мало відрізняються.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

Рекомендована кафедрою екології та екологічної безпеки

Стаття надійшла до редакції 18.05.11
Рекомендована до друку 20.06.11

Квартюрюк Сергій Михайлович — науковий співробітник, Іщенко Віталій Анатолійович — доцент, Квартюрюк Олена Євгенівна — здобувач.
Кафедра екології і екологічної безпеки, Вінницький національний технічний університет, Вінниця